
Drivers in Blender
Drivers in Blender is offered as a FREE supplement to:

 The Complete Guide to Blender Graphics, 7th Edition

Blender Drivers are Functions or Scripts which use
properties (values) to affect other properties. This control
is particularly applicable when animating. Drivers are
used to control the Animation of one property based on
the value of another.

For example the rotation of one Object may be used to
control the translation of another Object. This means that
the Objects animated value is not controlled by the frame
number interpolated from Keyframes, but rather by the
data in a specified Animation Channel. Drivers can take
their effects from single properties, differences in rotation,
or scripted Python expressions which can be edited
inside the User Interface controls.

Drivers are not limited to simple animated movements.
You may use the X Location of a Driver of an Object to
control the Material (color RGB curves) of another

Objects Material or use the Rotation of a Driver to control the Scale of an Object or use the Scale
of a Driver to control the shape (through shape keys) of a mesh/curve/etc., use a Python function
to control a constraint’s influence, and much much more.

One key usage of Drivers is in Character Animation: for example, you can add Object Drivers to
the Relative Shape Keys of a Face. Then, you manipulate the expressions of your Character just
by moving the Driver Objects.

Examples and instruction provided on the internet often make the assumption that the viewer is
conversant with Blender and has a reasonably advanced knowledge. It is, therefore, felt that a
beginner may find a simplified instruction beneficial.

Blender is continually being developed with new features being incorporated and improvements
made. In writing an instruction book it is difficult, if not impossible, to keep pace with the
developments. The lead time from completing a manuscript to publication to release, prohibits
some features from being included. Drivers were not included in the book and are, therefore,
offered as a supplement to the book and free to to those who are interested.

1

Blender Drivers

To understand the basic concept of using Drivers work through the following example.

A Driver will be set, causing a Monkey to rotate on its Z axis when a Cube is translated on
its Y axis. The Driver will be applied to the Monkey Object (Suzanne).

Open Blender with the default Scene containing the Cube object. Deselect the Cube and add a
Monkey object. Move the Monkey to one side as shown in Figure 1.1.

Split the 3D Viewport Editor in two and make one part the Driver Editor. With the cursor in the
Driver Editor press N key to display the Drivers Properties panel.

With the cursor in the 3D Viewport Editor press the N key to display the Transform Properties
Panel. You now have a properties panels in the 3D Viewport and in the Drivers Editor. With the
Mouse Cursor In the 3D Viewport Editor press the T Key to close the Tools panel and remove
clutter from the left hand side of the Scene.

With the Monkey Object selected right click on the Z Axis Rotation Slider in the Transform
Properties Panel (press N key). Select (click) Add Driver. The slider will turn purple showing
that a driver has been added and the Driven Property panel displays (Figure 1.2).

Drivers Editor 3D Viewport Editor Figure 1.1

Figure 1.2Transform Properties Panel in the 3D Viewport

Click RMB

Driver applied to Suzanne

2

Note: Moving the Mouse Cursor out of the panel, causes the panel to disappear from view.

Adding a Z Axis Driver with the Monkey selected means that a change in the property values of
a secondary Object, yet to be specified, will control the Z Axis Rotation of Suzanne. Specifying
the secondary Object takes place in the Drivers Editor.

The Drivers Editor

The secondary action is defined in the Drivers Editor (Figure 1.5). The Drivers Editor (at this
point) is showing the Z Euler Rotation Driver applied to Suzanne (the Monkey Object).

Where you see Show Cursor checked at the right hand side of the Editor is a copy of the
Driven Property View Tab. To see the full Properties Panel for Driver Properties , click on Z
Euler Rotation.

Figure 1.3

You may reinstate the panel for editing values.
RMB Click the Transform Z Axis Slider and
select Edit Driver (Figure 1.4).

Figure 1.4

RMB Click

Figure 1.5

Click to see
Full Properties

Figure 1.6

Driven Properties

3

Clicking Z Euler Rotation expands the view showing Driver Properties Tabs with F-Curve
selected. The center panel is the Graph Editor.

To set Z Euler Rotation Drivers for Suzanne, defining the secondary Object, change from the
F-Curve Tab to the Drivers Tab (Figure 1.8).

Figure 1.7

Figure 1.8

Variable (var) Datablock

Click and select Cube
To define the

Secondary Object

Selecting Cube as the Driver
Object enters the Z Euler
Rotation Graph Line in the
Graph Editor.

The Graph Editor will show the F-Curve for
the Driver Action (Figure XXX).

To see the Curve: Adjust the View.
Zoom – Scrole MMB
Pan – MMB click, hold, drag.
Scale – Press CTRL + MMB,
click, hold, drag horizontal or
vertical.

Select the Z Euler
Rotation Channel.

4

By selecting the Cube in the 3D Viewport Editor and using the Move Tool, Translating the Cube
along the X Axis of the Scene, Rotates Susanne about her Z Axis.

This simple demonstration is the tip of the iceberg in understanding Drivers and merely shows
that Drivers are a way to control values of properties by means of a function, or a mathematical
expression.

The Blender Manual: The Blender 3.0.0 Manual provides an in depth discussion of Drivers with
some excellent examples.

https://docs.blender.org/manual/en/latest/animation/drivers/introduction.html

Excellent Tutorial: One of many excellent tutorials on the internet describing the basic use of
Drivers is:

https://www.youtube.com/watch?v=N8GR9icb51w

Expanding the Demonstration

Go back to the Transform Properties Panel in the 3D Viewpot Editor with Suzanne selected and
add a Driver for the Z Location Channel. In the Driver Editor set Cube as the driver Object.

With the second driver
added to Suzanne,
Translating the Cube
Object along the X Axis
causes Suzanne to move
up or down an the Z Axis
while at the same time
Rotating on about the Z
Axis.

A Z Location Graph Line
is inserted in the Graph
Editor.

Z Location
Driver

Figure 1.9

Figure 1.10

5

The Driver Type determines how the variables are used. The type can be:

• a built-in function: for example, the sum of the variables’ values, or

• a scripted expression: an arbitrary Python expression that refers to
the variables by their names.

Without going into a whole heap of Python scripting, for the moment, consider that when var is
entered as the name of the variable value the Expression var + 0.0 is executed by the driver
causing Suzanne to Rotate when the Cube is moved on the X Axis of the Scene.

To gain an understanding of how the different settings and values affect the movement of Objects
study the following which has been copied from the Blender 3.0 Manual.

Workflow & Examples

Simple Drivers can be configured from the pop-over that appears when adding a new Driver.
When adding multiple Drivers or for more advanced configurations, it is useful to have open the
Drivers Editor.

Transform Driver

Control a property with an object’s transform. In this example, the Y rotation of Object 2 will be
driven by the X position of Object 1. Starting from a simple setup with two objects:

Add a Driver to the Rotation Y property of the second object via the context menu or with Ctrl-D.

Note: In the Driven Property the Driver Type by default is; Scripted Expression.

3D Viewport Editor

Y Rotation Driver
Added to Suzanne

Translate the Cube along the X Axis

Suzanne Rotates
About the Y Axis

Figure 1.11

Figure 1.12

6

Driver Editor

The Selected Channel

Cube Translated
Back along the X Axis

Suzanne Rotates
Uniformly about

The Y Axis

Drag the end Control Handle
 down flattening the Graph Line

Suzanne's Rotation
Slows Down

when the
Cube is Translated

Forward
along the X Axis

Cube Forward

Cube Back

Note: Driver Type: Average Value

Figure 1.13

Figure 1.14

7

Scripted Expression – Orbit a Point

Orbit an Object’s position (a Cube Object) around a point with a custom Scripted Expression.
The Object’s position will change when scrubbing the timeline. Circular motion can be defined
in 2D using the sine and cosine functions. In this example, the current frame is used as the
variable that induces the motion.

Adding Drivers in the 3D Viewport Editor for the X and Y Location Transform Properties of the
Cube creates Drivers Driven Properties for for the X Location and the Y Location of the Cube.
You see these Properties displayed in the Drivers Editor.

With a Cube entered in the 3D Viewport Editor, add
drivers to the X Location and Y Location channels.

3D View port Editor

Drivers Editor

X Location Channel Y Location Channel

Top Orthographic View

Figure 1.15

Figure 1.16

8

To set the Driven Properties to have the Cube Orbit around the center of the Scene when the
Timeline Editor Cursor is scrubbed you set values in the Driven Property Panels for both X and Y
Location Channels.

Pay careful attention to the values. The slightest error, especially to the Expression value, will
result in a failure.

Figure XXX shows the default Driven Property when a Transform Driver is added to the Cube.

The procedure fore editing values for the X Location Driver and the Y Location Driver is identical
except for the Expression. For X Location Driver change the Expression: var + 0.0 to:

 0 + (sin(frame / 8) *4)

Important: Type the Expression exactly as shown. Type sin NOT sine.

For the Y Location Driver the Expression is: 0 + (cos(frame / 8) *4)

When the Expression is entered the Error message in the default Driver display remains in the
panel.

There is a little more setup to do before the expression will take effect.

Default Driven Property Modified X Location Modified Y Location
Figure 1.17 Figure 1.19 Figure 1.20

Figure 1.21

9

Click-Select- Single Property

Click-Select- Scene

Click-Select- Scene

Type: frame_current

Scrubbing the Timeline
 (Dragging the Cursor)
Orbits the Cube in the
3D Viewport Editor.

Frame 0 Frame 66

Playing the Animation
sees the Cube
continually Orbit arbit
the center of the Scene

Timeline Editor

3D Viewport Editor

Remember
The procedure is identical

For the X and Y
Drivers

Figure 1.22

10

The Scripted Expression: 0 + (sin(frame / 8) *4)

(frame / 8) is the current frame of the animation, divided by 8 to slow the orbit down.

(sin() *4) multiplies the result of sin(frame /8) by 4 for a larger orbit circle.

0 + controls the offset to the obit center point.

The forgoing is intended to wet your appetite for using Drivers. With an understanding of Drivers
and perhaps a little bit of Python the results are limitless. To entice you further the following
exercise will show how a Python Script is used.

Randomise Object Properties

The objective in this exercise is to set up a Blender file which may be used to create a Random
Array of Objects, that is to create a number of similar objects which vary in their characteristics.
To be specific, say you want to create a bunch of cubes with each cube slightly different in size,
rotated and located in a different position in a scene. You do not require and specific differences,
in fact you want a Random Array of Objects.

There are several ways in which you could create the array. You could simply duplicate the Cube
in the 3D Viewport Editor then Scale, Rotate and Translate and change the Material. Keep on
doing this until you have sufficient Cubes. To help with changing the Objects size you could set
up Shapes Keys. To help with duplicating the Cubes you could use an Array Modifier or multiple
Array Modifiers. Needless to say these methods are somewhat tedious.

The following instructions will demonstrate how to set up a Blender File including a Python
Script which may be used with Drivers to create an Array.

Create the Blender File

In creating the Blender File you register a Python Script in the File. This means that this
particular Blender File, when saved, will contain the Python Script. The File will then be available
to be used for creating Random Arrays at a later date.

Create a Python Script

A Python Script is a piece of code written in
the Python Computer Language and is
simply a text file. In this exercise the script
shown in Figure 29.5 will be used.

Type the text shown in the diagram into a
Text Editor such as Notepad or Wordpad and
save the text file. You will copy and paste
this into a Blender file. You can type it directly
into the Blender text editor but having it saved
as a text file gives you a back up. Make sure
the text is copied exactly as shown. The
slightest error will cause an error when
running the script.

Figure 1.23

11

The Python Script will be used in conjunction with the Blender Driver Functions. Remember
where you have saved the Text File and the name of the File. The name of the File in this
exercise is rand.py.

Blender Driver Functions

In simple terms Drivers are functions which affect the attributes or properties of an Object. Refer
to the demonstration at the beginning of this paper where the translation of one Object controls
the rotation of another. In that instance the position of one Object in the Scene controlled the
rotation of the other. Instead of using the translation of an object the Python Script, will be
introduced to the Driver to control properties of Objects.

Registering the Script

The first step is to Enter and Register the Python Script in a Blender file. This will create a
Blender file which you can save for future use.

Open a new Blender file and open the Text Editor. Create a new Text Block by clicking New in
the window header or by clicking Text - Create New Text Block.

The default name of the new text block is show simply as Text. Rename this to something more
significant. Since you are about to work with random properties and a Python Script, ran.py. is
appropriate. Note the suffix .py is very important, therefore make sure you include this in the
name.

With the text block created go get your Python Script. That is, go to the text file you previously
created. Open the file in the Text Editor you used and select (highlight) the text and copy it to the
clipboard. Paste the text into the newly created text block in the Blender Text Editor.

Figure 1.24

Figure 1.25

Figure 1.26

12

In the Text Editor Header click Run Script then check Register.

Run Script will make the functions contained in the Script available to the Driver. The functions in
the Python Script are the randf, randi and gauss bits (functions). Register means that the next
time you open the Blender file it will run the script and register automatically.

Save the Blender File with the name RandomPy.blend.

Registering the Python Script makes functions in the script (randf, randi and gauss) available
for use by the Blender Drivers. Either of these functions can be called (entered into Blender) for
use by a driver. Saving the RandomPy.blend file means you now have a Blender file available
for generating random properties. How the randf (lo, hi) part of the Python Script works will be
demonstrated. This is the only part being used in this demonstration. Including the randi (lo, hi)
part and the gauss (mean, stdev) parts merely makes them available should you wish to use
them in the future. To understand these statements you will have to undertake a study of the
Python programming language.

OK! with the RandomPy.blend file open you can close the Text Editor and return the 3D
Viewport Editor.

Run Script

Note: If you close the RandomPy.blend file and reopen it at a later date a notice may
display in the Info window header stating For security reasons, automatic execution
of scripts in this file was disabled. This occurs if Auto Run Python Scripts is
disabled in the Preferences Editor.

Figure 1.27

Figure 1.28

13

At this point it will be assumed that you previously save the Blender File named RandomPy.blend
and now wish to use the File to create a Random Display of Objects. With the Array created you
can Append the Array into other Blender Files.

Arrange the 3D Viewport Editor and Driver Editor

Have BlenderPy.blend opened with the Blender Screen arranged as shown in Figure 1.1 with the
Driver Editor and 3D Viewport Editors side by side. Note: This arrangement is purely a matter of
choice and will depend on your Screen size and preference.

With the mouse cursor in the 3D Viewport press the N Key to display the Transform Properties
Panel. Note: This Properties Panel displays the same information as the Object Properties in
the Properties Editor, Object Properties Tab. Drivers may be added to an Object in either
Panel.

Save the File, that is save the current version of RandomPy.blend, as (Save As) a new File with a
name of your choice relevant to the Array you are creating, For example;
Random_Cubes.blend.

Saving a new File leaves the original File (RandomPy.blend) intact, for future use.

OK you have Random_Cubes.blend opened ready to go.

Note: The Array to be created will be constructed in stages by Adding Property Drivers and
Expressions for different facets of the Array. To begin a Rotation Driver will be engaged.

Rotation Driver Properties

Begin by setting a driver for the X Rotation Property of the default Cube Object in the 3D
Viewport. Make sure your Object, the Cube, is selected. In the Object Properties panel of the
3D Viewport Editor, right mouse click on X Rotation and select Add Driver (Figure 1.29).

At this point the Driver does nothing since you have to instruct it to call the Python Script function.

Cube Selected
Add Driver

Driver Editor 3D Viewport Editor

X Euler Rotation Channel Selected

Figure 1.29

14

Remember: The Blender File named RandomPy.blend has been created with the Python Script
named ran.py entered and registered. You have then copied the File and saved it as
Random_Cubes.blend. Since it is a copy of RandomPy.blend it also has the Python Script
ran.py entered and registered.

Attempting to create an Array in a new Blender File without the Python Script entered and
registered will fail.

Enter the Python Script Function

You are using a Scripted Expression (Python Script) which has been entered and registered in
the Blender File named Random_Cubes.blend (a copy of RandomPy.blend). The Python Script
contains several functions.

You have Added an X Axis Rotation Driver to the Cube Object. The Driver Type is: Scripted
Expression. The objective in this first stage of creating an Array is to generate a Random
Rotation of the Cube. This means that a change to the status of the Cube, such as, it's location in
the Scene will cause the Cube to randomly Rotate.

To have the Driver execute this Random Rotation you call a function in the Python Script, in this
instance, def randf(lo, hi).

Read this as, rand [random], f [function], (lo, hi) [lower value to higher value] which you enter in
the Driver Property Panel as the Expression: randf(-pi, pi)

pi (in Python) = π = 3.142. There are 2 π Radians in 360°,
therefore, (-pi, pi) = -180° to +180°.

-180°

+180°

Figure 1.30

Figure 1.31

15

Immediately you enter the Expression you will see the Cube Rotate about the X Axis in the 3D
Viewport. Each time you click Update Dependencies in the Driver Property panel the Cube
Rotates to a new orientation. With the Cube selected in the 3D Viewport, pressing the G Key and
dragging the Mouse sees the Cube Rotate to a new orientation.

Entering the function is in effect telling Blender to use randf expression of your Python Script with
the arguments -pi and +pi to recalculate a random value of rotation about the Cubes X Axis
within the range minus π to pluss π. In other words pick a rotational value about the X Axis
between 0° and 360° since there are 2 π radians in a circle (Arguments are values that an
expression uses in its calculation).

By adding Drivers to the Y Axis and Z Axis Rotation Channels and entering randf(-pi, pi) as the
Expression in the Driver Property Panel the Cube will Rotate Randomly about all three Axis.

Note: When using the randf(hi, lo) Expression the hi lo values are not limited to Rotational
values. If you are using the Expression to affect the Scale of an Object you would use numeric
values.

Re-evaluating Drivers

With Drivers set , in the 3D Viewport, pressing G key (Grab) and dragging the Mouse moves the
Object in the Scene. Blender constantly re-evaluates the Driver and produces random values for
the properties values. Note: This will affect any Driver which has the “randf”, “randi”, or “gauss”
Python expression inserted. This function can be negated by unchecking the F-Curve
Contribution button in the Driver Editor. You will want to negate this function if you require to
manually reposition the cube without it Rotating.

Scale Properties Driver

Up to this point Rotation Drivers have been evaluated but, in fact, any Object Property can have
a Driver added and use a Python Script Expression.

You can create Scale Drivers and set up a process where the X, Y and Z Axis all Scale in
proportion to each other. To show how this works a different process will be demonstrated for
each axis. You may however use any one of the processes on each axis.

Uncheck the F-Curve Contribution Button

When entering values in the Expression be careful when pressing the . (period)
Key and , (comma) Key. Its too easy to press the wrong Key.

Figure 1.32

16

X Axis Scale Driver (Scripted Expression)

Start by adding the X Axis Scale Driver using Scripted Expression. In the 3D Viewport, Object
Properties panel, RMB click on Scale: X Axis, select Add Driver etc. as before. A new Driver
Channel is entered in the Driver Editor and again, clicking on the Channel displays the Driven
Property Panel. The Tabs displayed are now applicable to the X Axis Scale of the Cube in the 3D
Viewport (Figure 1.33).

This set up is the same as you used for the X Axis Rotation with the exception that you insert the
values 0.8 and 1.8 instead of -pi and pi in the randf Expression

The X Scale value will now be randomly re-evaluated between 0.8 and 1.8 Blender units when
you click Update Dependencies. You can set any values you like but don't get carried away.

Y Axis Scale Driver (Max, Min, Sum, Average values with Variable)

On the Y Axis Scale values, Right click Add Driver. Instead of
selecting Scripted Expression in the Driver Editor, Driven Property
Panel, choose either Max, Min, Sum or Average Driver types. Use
Average Value (Figure 1.34).

This is where the Variable Data-block in the
Driven Properties Panel is used. Note: An error
message displays until data is entered in the
Variable Datablock and you click Update
Dependencies (Figure 1.34).

OK! You are setting up the Y Axis Scale Driver but you want to use the
X Axis Scale Data via the Variable Datablock to control the scaling of
the Cube on the Y axis.

Scale Driver Added

Scale Driver Added

Driver Editor 3D Viewport Editor

 Variable Datablock

Figure 1.33

Figure 1.34

17

Enter the following in the Variable Datablock with the Cube selected
(The cube object being used) in the Specific Property I.D. block.

Use: Transform Channel. Type: X Scale. Space: Transform Space
(Figure 29.14)

At this point clicking Update Dependencies produces a random Scale
change along the X Axis of the Cube with a corresponding change on
the Y Axis.

Z Axis Scale Driver

Repeat the identical process for the Z Axis as that used for the Y Axis.

Clicking Update Dependencies recalculates random scale values and all Axis Scale in
proportion. Translating the Cube in the 3D Viewport will do the same thing.

OK! Take a deep breath. You are not finished.

Note: Since you are referring to the X Axis Scale to control the Y Axis
Scale you must have the X Axis Scale Driver in place.

X Axis

Y Axis

Note: As previously stated, if you take a break and save and close the program,
then come back to it later on, you may find an error message in the Driver Editor,
Driven Property Panel, stating, ERROR: Python auto execution disabled.
There will also a be Auto-run disabled Driver notification in the Info Editor
Header. If this occurs click on Reload Trusted in the Info Editor Header.

Note: You may also find Invalid Python script ERROR message in the Driven
Property Panel. In this case open the Text Editor window which will have the
Python script and click Run Script.

Figure 1.35

Figure 1.36

18

Material Property Drivers

Material properties can be randomized using Python Script just as you did with the Rotation and
Scale properties for the X Axis Driver. For the Rotation you used a value range of -pi to pi (2π
radians in a circle, therefore -π to +π) and for the Scale the range was 0.8 to 1.8 Blender units).

Remember: For the Cube's X Axis Scale randomizing was performed using Scripted Expression
randf(lo, hi). For the Y Axis Scale randomizing was dependent on the Average Value of the X Axis
Scale.

When using the randf(lo, hi) Expression to generate random colors on
the Object, when dependencies are updated, you use the numeric values
in the RGB Color Scheme range where 1.000 = White and 0.000 = Black.

The values between these maximum and minimums produce the
spectrum of visible color between white and black. To randomize Material
within the spectrum all that is required is to use the expression
randf(0.000, 1.000).

Remember: The Blender File must have the Python Script Entered, Run
and Registered. Use the File named RandomPy.blend previously
created.

The first step in randomizing Materials (colors) is to Add
Drivers. Previously Drivers have been Added in the
Transform Properties Panel in the 3D Viewport Editor which
displays when you press the N Key. This Panel does not
include Material settings. To Add Drivers for Materials you
right click on the Base Color bar in the Properties Editor,
Material Properties and select Add Drivers.

The Drivers Editor will display Driver Channels for the RGB
Materials and the A (Alpha or Transparency value).

RMB Click, Add Drivers

Properties Editor

Material Properties

Note: To demonstrate Randomizing Materials by
Adding Drivers in the Properties Editor, Material
Properties will be employed with Blender Nodes
deactivated.

Use Nodes Deactivated

Figure 1.37

Figure 1.38

19

Select each Driver Channel in turn and in the corresponding
Driven Property Panel enter the Expression: ranf(0.000,
1.000)

You may disregard the A Alpha Channel if you are not
concerned with having the selected Object fade in the view.

Each time Update dependencies is pressed the Material
(color) changes randomly.

Driver Channels

When Enter is pressed to enter the script the Error
Message changes to

Figure 1.39

Figure 1.40

Figure 1.41

20

Duplicating the Object

In the 3D Viewport, by default, there is only have a single Cube Object in the Scene. Remember,
at the beginning of the chapter, the objective was to create a bunch of Cubes scattered about the
Scene.

It will be assumed that Material Drivers have Added as well as Rotation Drivers (see Figure
1.42)

All you do is simply duplicate the Cube. With the Cube selected press Shift + D key to duplicate.

A duplicate is created and placed in Grab Mode ready to be Translated. Drag the mouse to
relocate and observe that the original and the duplicate are both re-evaluated by the Drivers and
the properties change.

There are now two Cube Objects in the Scene which are identical and appear to be separate.
The duplicate Cube (Cube.001) is however linked to the original (Cube) in that it is sharing
Properties Data-Blocks of the original. If you translate Cube.001, Update Dependencies is
activated and the properties of the Cube change. If you translate Cube the properties of both
Cubes are changed.

Shift select both Cubes and you will see two sets of Drivers in the Graph Editor window (Figure
1.42).

Cube.001

Cube

Note: The X and Y Euler
Rotation Drivers Added to
Cube and Cube.001
respectively.

Figure 1.42

21

Note: The Euler Rotation Drivers have been Added separately to Cube and Cube.001 following
the Cube being duplicated. If the X Euler Rotation Driver were Added to Cube, before duplication,
then both Cube and Cube.001 would have an X Euler Rotation Driver.

Anomaly: The above being the case, selecting either Cube and pressing G Key (Grab Mode)
and moving the Mouse sees the selected Cube, Translated and randomly Rotated but the
Material remains the same. Shift selecting both Cube and Cube.001 and Translating sees both
Cubes randomly Rotated with the Material unchanged. Clicking Update Dependencies in any
Driver, Driven Property Panel sees both Cubes randomly Rotate with the Material changing but
the Material on both Cubes is identical.

To have the Material and Rotation randomly change when Update Dependencies is pressed,
select all Cubes in the 3D Viewport Editor then in the Header click Object – Relations – Make
Single User - Object & Data & Material.

Select all Cubes and continue duplicating as many times as you like (Figure 1.44).

Figure 1.43

22

Duplicating Objects in the 3D Viewport
Editor which have Drivers Added
duplicates Drivers in the Driver Editor.
For each duplication, select add Objects
in the 3D Viewport Editor and perform the
Make Single User procedure.

Figure 1.44

23

Animating the Properties

The simplest way to demonstrate the Animation of the Properties is to select all the Cubes in the
3D Viewport Editor (Press A Key), press the I Key and select Location, Rotation, Scale & Custom
Properties. Do this at several Frames in the Timeline Editor. Play the Animation in the Timeline to
see the randomly Rotate and change color.

In Conclusion

The forgoing description of Randomizing Properties is based on material in a Video Tutorial
presented by David Miller. For an in depth understanding of this fantastic application in Blender
the Tutorial is highly recommended.

Video: https://vimeo.com/40389198

David Writes: I found it easy to work with drivers on object and mesh properties. But I found it
surprisingly difficult to get drivers to work on properties in material, texture, and node datablocks.
This video will show you the secrets to coercing drivers to work anywhere:

• learn multiple ways to create a driver; when one method fails, another will work
• learn how to fix broken drivers after copying an object workflow tips for managing many

drivers, objects, and datablocks

There is a multitude of Tutorials available on the Internet specific to the application of Drivers but
bare in mind, many have been written and presented as the Blender program continues to
develop. You will, therefore, encounter anomalies between the instruction provided and the
current Blender release.

You are encouraged to pursue this topic and experiment with new and current information.

24

https://vimeo.com/40389198

	Workflow & Examples

